| | 1 | Acid-base reactions are examples of proton | |------------------|------|--| | (a)
transfer. | | ylamine is a weak base and sodium hydroxide a strong base. | | | (i) | In terms of proton transfer, explain what is meant by the term weak base | | | | [2 | | | (ii) | Given aqueous solutions of both bases, describe how you could show that sodium hydroxide is the stronger base. How could you ensure a 'fair' comparison between the two solutions? | | | | | | | | | | | | | | | | [3 | | (b) | Eth | ylamine reacts with acids to form salts. | | | | ${\rm CH_3CH_2NH_2}$ + ${\rm HC}l$ \rightarrow ${\rm CH_3CH_2NH_3C}l$ ethylammonium chloride | | | (i) | Complete the equation for the reaction between sulfuric acid and ethylamine. Name the salt formed. | | | | \dots CH ₃ CH ₂ NH ₂ + \dots \rightarrow \dots | | | | name of salt[3 | | | (ii) | Amines and their salts have similar chemical properties to ammonia and ammonium salts | | | | Suggest a reagent that could be used to displace the weak base, ethylamine, from its salethylammonium chloride. | | | | [1] | | | | | | | | | | (c) | Gas | ases diffuse, which means that they move to occupy the total available volume. | | | | | | | |-----|------|---|--|--|--|--|--|--| | | (i) | Explain, using kinetic particle theory, why gases diffuse. | [2] | | | | | | | | | (ii) | When the colourless gases hydrogen bromide and ethylamine come into contact, a white solid is formed. | | | | | | | | | | $CH_3CH_2NH_2(g) + HBr(g) \rightarrow CH_3CH_2NH_3Br(s)$
white solid | | | | | | | | | | The following apparatus can be used to compare the rates of diffusion of the two gases ethylamine and hydrogen bromide. | | | | | | | | | | gives off gives off $CH_3CH_2NH_2(g)$ $HBr(g)$ | | | | | | | | | | A B C | | | | | | | | | 00 | otton wool soaked in cotton wool soaked in | | | | | | | | | CO | ethylamine(aq) conc. hydrobromic acid | | | | | | | | | | Predict at which position, A , B or C , the white solid will form. Explain your choice. | [3] | | | | | | | | | | [Total: 14] | | | | | | | | a) Define the term <i>diatomic</i> . | | | | | | | | | |--------------------------------------|---|--|---------------------------------|-----------|--|--|--|--| | (ii) | (ii) What do the electron distributions of the halogens have in common? | | | | | | | | | (iii) | How do thei | r electron distributions differ? | | ••••• | | | | | | | | | | | | | | | | (iv) | Complete th | e table. | | | | | | | | | halogen | solid, liquid or gas at room temperature | colour | | | | | | | | chlorine | | | | | | | | | | bromine | | | | | | | | | | iodine | | | | | | | | | | | | | | | | | | | Dra
of t | aw a diagram
the covalent c | act with other non-metals to for
which shows the arrangemen
ompound arsenic trifluoride.
ribution of an arsenic atom is | t of the valency electrons in o | one moled | | | | | | Us | • | nt an electron from an arsenion tan electron from a fluorine | | | | | | | **(c)** Photochromic glass is used in sunglasses. In bright light, the glass darkens reducing the amount of light reaching the eye. When the light is less bright, the glass becomes colourless increasing the amount of light reaching the eye. Photochromic glass contains very small amounts of the halides silver(I) chloride and copper(I) chloride. The reaction between these two chlorides is photochemical. | How does photochromic glass work? | | |-----------------------------------|-------------| | | | | | [3] | | | [Total: 11] | | Seleni | um and sulfur are in Group VI. They have similar properties. | | |---------------|--|----| | | ne of the main uses of selenium is in photoelectric cells. These cells can change lighto electrical energy. | ht | | (i) | Name a process which can change light into chemical energy. | | | (ii) | Name a device which can change chemical energy into electrical energy. | | | | [2 | 2] | | (b) Th | ne electron distribution of a selenium atom is 2 + 8 + 18 + 6. | | | (i) | Selenium forms an ionic compound with potassium. Draw a diagram which show the formula of this ionic compound, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use o to represent an electron from an atom of potassium. Use x to represent an electron from an atom of selenium. | | | | | | | | [3 | 3] | 3 | (11) | of the covalent compound selenium chloride. Use x to represent an electron from an atom of selenium. | |---------|---| | | Use o to represent an electron from an atom of chlorine. | | | | | | | | | | | | | | | | | | [3] | | (iii) | Predict two differences in the physical properties of these two compounds. | | | | | | [2] | | (c) The | e selenide ion reacts with water. | | | $Se^{2-} + H_2O \rightarrow HSe^- + OH^-$ | | Wh | nat type of reagent is the selenide ion in this reaction? Give a reason for your choice. | | | | | | [3] | | | [Total: 13] | Ch | lorine reacts with phosphorus to form phosphorus trichloride. | |---------|--| | ti
L | Oraw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound, phosphorus trichloride. Jse x to represent an electron from a phosphorus atom. Jse o to represent an electron from a chlorine atom. | | | [2] | | (b) F | Phosphorus trichloride reacts with water to form two acids. | | (| i) Balance the equation for this reaction. | | | $PCl_3 +H_2O \rightarrowHCl + H_3PO_3$ [1] | | (i | i) Describe how you could show that phosphorus acid, $\rm H_3PO_3$, is a weaker acid than hydrochloric acid. | | | | | | | | | [3] | | | | | | | | | | 4 | (111) | these salts from aqueous phosphorus acid. Specify any other reagent needed and briefly outline the method. | |-------|--| | | sodium salt | | | | | | [2] | | | calcium salt | | | | | | [2] | | | | | | [Total: 10] | - 5 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates. - (a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below. (i) Name the change that occurs in the region **D** to **E**. [1] (ii) What would be the difference in the region **B** to **C** if an impure sample had been used? [1] (iii) Sketch on the graph how the line would continue if the acid was heated to a higher temperature. [1] | (iv) | Complete | the following | table | that | compares | the | separation | and | movement | of | the | |------|-----------|---------------|---------------|--------|---------------------|------------|------------|-----|----------|----|-----| | | molecules | in regions C | to D w | ith th | nose in E to | F . | | | | | | | | C to D | E to F | |--|-----------------|--------| | separation (distance between particles) | | | | movement of particles | random and slow | | | | | | | Can particles move apart to fill any volume? | | | [5] | (h) | Complete | the word | equations | for the | reactions | of | ethanoic a | cid | |-----|----------|-----------|-----------|----------|-----------|-----|--------------|------| | v | Complete | tile word | Equations | וטו נווכ | Teactions | OI. | Cilialiolo a | oiu. | | calcium | + | ethanoic acid | - | | |---------|---|----------------|----------|--| | Calcium | • | Ctrianole acid | | | + (c) Write the symbol equation for the reaction between ethanoic acid and sodium hydroxide. [2